

Caratteristiche tecniche e costruttive

Il produttore ed accumulo NB TANK e NBM TANK è costituito da due serbatoi coassiali assemblati con il sistema "TANK IN TANK".

Grazie al particolare accoppiamento dei serbatoi, la totale superficie dell'accumulo interno in acciaio inox è a contatto con il fluido riscaldante, garantendo così al produttore, una grande superficie di scambio con conseguenti elevate rese termiche.

I principali vantaggi di questo sistema si traducono in:

- Ridotte dimensioni di ingombro, con possibilità d'installazione anche in spazi ristretti.
- <u>Alto rendimento</u>, con elevata produzione di acqua calda sanitaria anche in situazioni non ottimali.
- <u>Flessibilità</u> di funzionamento e d'installazione.
- Forte isolamento termico che riduce al minimo le dispersioni di calore.
- Possibilità d'installazione in qualsiasi locale, grazie alla sicurezza del prodotto ed alla finitura che lo rende di gradevole aspetto.

La particolare disposizione degli attacchi rende estremamente flessibile l'installazione del produttore di questa serie, infatti è stato progettato e costruito per poter lavorare pensile ad asse orizzontale o verticale, oppure a basamento.

Tutti i produttori sono corredati di una connessione posta sotto al quadro comandi per un'eventuale integrazione con resistenza elettrica.

COSTRUZIONE E FINITURA.

L'accumulatore d'acqua calda sanitaria è costruito interamente in acciaio inox di qualità AISI 316 Ti che garantisce una perfetta igienicità dell'acqua al suo interno ed una resistenza alla corrosione con conseguente durata nel tempo che nessun altro materiale può garantire.

Il serbatoio esterno è invece costruito con l'utilizzo di acciaio di qualità S235JR EN10025.

Tutti i produttori sono isolati termicamente con poliuretano rigido di forte spessore e finiti esternamente con una guaina in PVC e coperchi termoformati in PST nero.

Quadro comandi, staffe d'ancoraggio a muro e piedi per supporto a basamento sono di serie.

Gamma prodotti:

mod. NB TANK	Produttore di acqua calda sanitaria con serbatoio interno in AISI 316 Ti e serbatoio							
	esterno in S235JR EN10025. Isolamento termico in poliuretano rigido, finitura esterna							
	in PVC e coperchi termoformati in PST. Quadro comando e controllo, staffe di							
	ancoraggio a muro e piedini per installazione a basamento.							
mod. NBM TANK	Produttore di acqua calda sanitaria con serbatoio interno in AISI 316 Ti e serbatoio							
	esterno in S235JR EN10025, installazione solo a basamento. Isolamento termico in							
	poliuretano rigido, finitura esterna in PVC e coperchi termoformati in PST. Quadro							
	comando e controllo.							

Caratteristiche tecniche coibentazioni

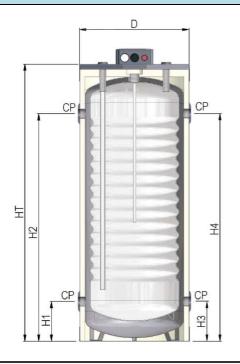
Isolamento rigido.

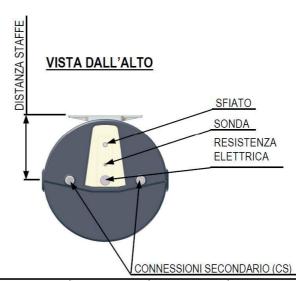
Isolamento composto da poliuretano (PU) rigido con contenuto di cellule chiuse superiore al 93% iniettato direttamente sul serbatoio in stampo cilindrico, autoestinguente secondo ISO 3582 (classe B2, DIN 4102), densità pari a 40÷42 kg/m3, conduttività media di 0.019 W/mK alla temperatura di 45°C. Esente da CFC e HCFC.

Finitura esterna.

- Guaina in PVC.

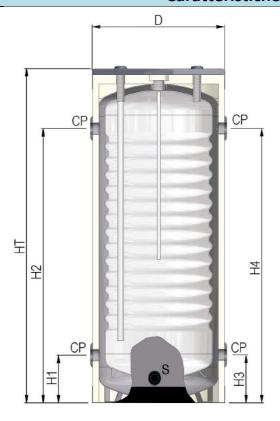
Caratteristiche tecniche trattamento anticorrosivo

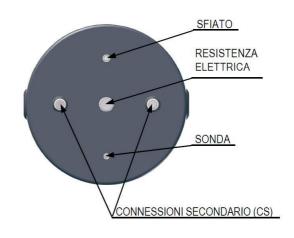

TRATTAMENTO DI DECONTAMINAZIONE.


I bollitori costruiti con l'impiego di acciai inossidabili, vengono trattati con procedimenti di decapaggio e passivazione a lavorazione e collaudo ultimati.

Il trattamento si esegue nelle seguenti fasi:

- Sgrassaggio, atto ad eliminare ogni tipo di residuo oleoso o sostanza grassa intervenuta durante la fase di lavorazione.
- Decapaggio, finalizzato a rimuovere l'ossido formatosi in conseguenza al riscaldamento de lembi saldati.
- Passivazione, più propriamente detta "decontaminazione" è una lavorazione per ripristinare il naturale strato passivo delle lamiere, soprattutto nelle zone alterate dalla saldatura e altresì per evitare l'innescamento di fenomeni corrosivi da "pitting" (vaiolatura).
- Lavaggio con acqua corrente eliminando, con estrema accuratezza, ogni singola traccia di soluzione acida.


Caratteristiche dimensionali NB TANK



CAPACITÀ ACCUMULO		112	156	201	241	
	Capacità acqua sanitaria	litri	97	140	180	215
	Superficie di scambio	m ²	1,35	1,73	2,10	2,50
D	Diametro con isolamento rigido	mm	550	550	550	550
НТ	Altezza totale	mm	920	1150	1385	1670
IS	Interasse connessioni circuito secondario	mm	320	320	320	320
H1	Altezza connessione circuito primario	mm	210	185	210	210
H2	Altezza connessione circuito primario	mm		-	-	1410
Н3	Altezza connessione circuito primario	mm		-	-	210
H4	Altezza connessione circuito primario	mm	670	915	1160	1410
Sf	Interasse sfiato	mm	160	160	160	160
So	Interasse sonda	mm	70	70	70	70
ST	Distanza staffe	mm	295	295	295	295
	DIAMETRO ATTACCHI					
cs	Connessioni circuito secondario	GAS	3/4"	3/4"	3/4"	3/4"
СР	Connessioni circuito primario	GAS	1"1⁄4	1"1⁄4	1"1⁄4	1"1⁄4
RE	Connessione resistenza elettrica	GAS	1"1⁄4	1"1⁄4	1"1⁄4	1"1⁄4
So	Connessione sonda	GAS	Tubo 14 × 1			
Sf	Connessione sfiato	GAS	3/8"	3/8"	3/8"	3/8"

Caratteristiche dimensionali NBM TANK

CAPACITÀ ACCUMULO		330	550	800	1000	
	Capacità acqua sanitaria	litri	280	480	60	890
	Superficie di scambio	m ²	2,70	3,60	4,70	5,30
D	Diametro con isolamento rigido	mm	710	810	950	950
HT	Altezza totale	mm	1390	1820	1880	2170
IS	Interasse connessioni circuito secondario	mm	330	330	600	600
H1	Altezza connessione circuito primario	mm	200	285	265	260
H2	Altezza connessione circuito primario	mm	1150	1485	1565	1860
Sf	Interasse sfiato	mm	165	165	300	300
So	Interasse sonda	mm	70	70	330	330
	DIAMETRO ATTACCHI					
CS	Connessioni circuito secondario	GAS	1"	1"	2"	2"
СР	Connessioni circuito primario	GAS	1"1⁄4	1"1⁄4	2"	2"
RE	Connessione resistenza elettrica	GAS	1"1⁄4	1"1⁄4	1"1⁄4	1"1⁄4
So	Connessione sonda	GAS	1/2"	1/2"	1/2"	1/2"
Sf	Connessione sfiato	GAS	1/2"	1/2"	1/2"	1/2"

Pressioni e temperature NB/NBM TANK

- Pressione max. di esercizio serbatoio inox ACS (secondario): 6 bar
- Pressione di collaudo serbatoio inox ACS (circuito secondario): 9 bar
- Pressione max. di esercizio intercapedine totale (circuito primario): 3 bar
- Temperatura max. di esercizio: 95°C

Prodotti conformi alla Direttiva 97/23/CE.

Dati termodinamici NB TANK

Temperatura primario (80-60)°C – Temperatura secondario (12-45)°C – Temperatura accumulo 55°C

MODELLO	NB TANK 112	NB TANK 156	NB TANK 201	NB TANK 241	
Prelievo primi 10'	(litri)	234	312	390	466
Tempo di carica	(min)	10	12	12	12
Produzione continua	(l/h)	650	780	935	1100
Portata primario	(l/h)	1080	1290	1580	1850
Potenza	(kcal/h)	21490	25790	30950	36970
Potenza	(kW)	25	30	36	43
Perdita di carico	(m.c.a.)	0.020	0.066	0.096	0.130

Dati termodinamici NBM TANK

Temperatura primario (80-60)°C – Temperatura secondario (12-45)°C – Temperatura accumulo 55°C

MODELLO		NBM TANK 330	NBM TANK 550	NBM TANK 800	NBM TANK 1000
Prelievo primi 10'	(litri)	710	820	1250	1360
Tempo di carica	(min)	18	24	28	29
Produzione continua	(l/h)	1200	1600	2000	2350
Portata primario	(l/h)	1990	2650	3454	3895
Potenza	(kcal/h)	39690	52920	69090	77900
Potenza	(kW)	46	61.5	80	90.5
Perdita di carico	(m.c.a.)	0.200	0.324	0.500	0.600

Dati termodinamici NB TANK

Temperatura primario (85-75)°C – Temperatura secondario (12-45)°C – Temperatura accumulo 60°C

MODELLO	NB TANK 112	NB TANK 156	NB TANK 201	NB TANK 241	
Prelievo primi 10'	(litri)	272	372	466	555
Tempo di carica	(min)	10	12	12	12
Produzione continua	(l/h)	791	1014	1231	1465
Portata primario	(l/h)	2650	3350	4070	4840
Potenza	(kcal/h)	26122	33475	40635	48375
Potenza	(kW)	30.3	38.9	47	56
Perdita di carico	(m.c.a.)	0.025	0.070	0.105	0.140

Dati termodinamici NBM TANK

Temperatura primario (85-75)°C – Temperatura secondario (12-45)°C – Temperatura accumulo 60°C

MODELLO	NBM TANK 330	NBM TANK 550	NBM TANK 1560	NBM TANK 1000	
Prelievo primi 10'	(litri)	750	995	1560	1850
Tempo di carica	(min)	18	25	28	28
Produzione continua	(l/h)	1583	2110	2755	3100
Portata primario	(l/h)	5230	6970	9099	10290
Potenza	(kcal/h)	52245	69660	90945	102550
Potenza	(kW)	60.7	81	105	119
Perdita di carico	(m.c.a.)	0.220	0.350	0.550	0.670